Raytheon makes diamond plates in an array of sizes. Lasers are used to cut desired shapes. (Photo courtesy of Raytheon)

GaN Technology Triples Power Density

April 18, 2014
Raytheon’s GaN technology recently showed that it can provide as much as five times the thermal conductivity of previous SiC-on-diamond transistors.

Gallium nitride (GaN) continues to reach new milestones as a leading semiconductor technology. As a replacement for silicon carbide (SiC) on diamond, for instance, Raytheon’s GaN-on-diamond devices reportedly boasted three to five times’ higher thermal conductivity in a recent demonstration. As a result, the technology could enable next-generation radar, communications, and electronic-warfare systems to perform at higher levels while reducing cost and size.

The demonstration used a 10-x-125-μm (1.25-mm) GaN-on-diamond high-electron mobility transistor (HEMT). The device represented a unit cell for constructing power-amplifier (PA) monolithic microwave integrated circuits (MMICs). Those MMICs serve as the foundation for solid-state RF transmitters and active electronically scanned arrays. With the GaN-on-diamond technology reducing thermal resistance within the device, they can be used at higher power densities. This aspect helps to reduce the cost, size, weight, and power of these systems.

These results build upon the company’s first demonstration of GaN-on-diamond transistors in 2009 and GaN-on-diamond MMICs in 2011. Raytheon’s diamond material is synthesized using a chemical-vapor-deposition (CVD) process that allows for higher conductivity. That process and technology are an integral part of Raytheon’s radar programs including Air and Missile Defense Radar and Next Generation Jammer.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.