Image

Integrated 60-GHz Transceiver Conquers Four-Channel Communications

June 18, 2013
This 60 GHz, 16QAM transceiver includes the RF front end, antenna, and analog and digital baseband circuitry to achieve four-channel wireless communication for QPSK and 16QAM with low power consumption.

Many of today’s backhaul wireless-communications standards use a 60-GHz carrier frequency. Because that frequency is 25 times higher than that of a conventional wireless local-area network (WLAN), the demands on the RF front-end design are quite stringent. Compared to conventional transceivers, a 60-GHz transceiver in particular poses many design challenges. To overcome these issues, a 60-GHz, direct-conversion RF front end and baseband transceiver has been created that incorporates analog and digital circuitry for the physical-layer (PHY) functions. The entire system—including RF and baseband circuitry using a 6-dBi antenna built in an organic package—can transmit 3.1 Gb/s over 1.8 m in quadrature phase shift keying (QPSK) and 6.3 Gb/s over 0.05 m in 16-state quadrature amplitude modulation (16QAM).

This 65-nm CMOS front end consumes 31 mW in transmitting mode and 223 mW in receiving mode. It can handle 16QAM wireless communication beyond 7 Gb/s for every channel of the 60-GHz standards. Impressively, that performance feature can be extended to 10 Gb/s. The transceiver’s 40-nm CMOS baseband circuitry, which includes analog, digital, and input/output (I/O) circuitry, consumes 196 and 427 mW, respectively, for 16QAM in transmit and receive modes. In the analog baseband portion, in particular, a 5-b, 2304-MSample/s analog-to-digital converter (ADC) consumes 12 mW while a 6-b, 3456-MSample/s digital-to-analog converter (DAC) consumes 11 mW. For its part, the digital baseband circuitry—while integrating all PHY functions—boasts a power-conserving (1440, 1344), low-density parity-check (LDPC) decoder that consumes 74 mW with a user bit rate of 6.3 Gb/s and energy efficiency of 11.8 pJ/b.

This transceiver is the brainchild of an impressive team: Kenichi Okada, Masaya Miyahara, Hiroki Asada, Ryo Minami, Ahmed Musa, Yuuki Tsukui, Hironori Sakaguchi, Toshihiko Ito, Yasuaki Takeuchi, Ning Li, Qinghong Bu, Rui Murakami, Keigo Bunsen, Kota Matsushita, and Akira Matsuzawa from the Tokyo Institute of Technology; Toyota’s Keitarou Kondou, Masashi Shinagawa, Yasuo Asakura, Shinya Tamonoki, Hiroyuki Yamagishi, Yasufumi Hino, Makoto Noda, and Tatsuya Yamaguchi; Takahiro Sato from Nintendo Corp.; Naoki Shimasaki and Rui Murakami from Panasonic Corp.; and Toshihiko Ito from ABB. See “Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver with Low-Power Analog and Digital Baseband Circuitry,” IEEE Journal Of Solid-State Circuits, Jan. 2013, p. 46.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications