Frequency-Selective Structures Call for Special Substrates and Inks

Frequency-Selective Structures Call for Special Substrates and Inks

Jan. 9, 2019
Various manufacturing materials and production methods and their impact on the performance of frequency-selective structures (FSSs) are investigated.

Frequency-selective structures (FSSs) have come a long way since the early 1960s, due to advances in materials and manufacturing methods. These structures serve many different commercial and military applications, operating as antennas, filters, radomes, and other components in indoor and outdoor RF/microwave systems. They may be fabricated on materials as straightforward as dielectric substrates with laminated single-sided or double-sided copper sheets. Or they may use more elaborate construction materials such as multilayer printed-circuit boards (PCBs) with many different layers of conductive metals or inks providing circuit materials on the dielectric materials.

Depending on the frequency response desired for an FSS, passive circuit elements like capacitors or active devices (e.g., PIN or varactor diodes) may be added to the substrate material. Electrically conductive inks are often used in the construction of two-dimensional (2D) or three-dimensional (3D) FSSs, with some specialized conductive inks, such as silver nanoparticle inks, enabling the development of high-performance FSSs for a wide range of dielectric substrate materials. In some cases, the capabilities to deposit conductive ink droplets on demand on different substrate materials, including on paper and vinyl polymers, provides the flexibility to create form-fitting FSSs, even on glass surfaces.

As researchers at the Instituto de Telecomunicações in Leira, Portugal and the School of Telecommunication Engineering at the Universidade de Vigo in Spain have learned, work on solid- and liquid-based FSSs has been extensive, although they have attempted to simplify their review of FSSs, including the effects of substrate material parameters on circuit performance. Material parameters such as dielectric constant, dielectric loss, and even dielectric thickness were considered when comparing different FSS substrate materials and material technologies.

Specialized FSSs, such as fluid-based FSSs, may require structures apart from other forms of FSSs, like tubing for the electrically conductive fluid, but they may also provide the characteristics and performance levels that can not be achieved with other FSS types. Each FSS approach offers different costs, shape complexities, and tuning limits, and the reviewers encourage researchers exploring different FSS technologies to carefully consider the needs of their applications and how these technologies may serve their purposes.

See “A Review of Manufacturing Materials, and Production Methods for Frequency-Selective Structures,” IEEE Antennas & Propagation Magazine, Vol. 60, No. 6, December 2018, pp. 110-119.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications