Nanoparticles

Nanocrystalline Ceramics Form Advanced Armor

May 30, 2018
Nanostructure ceramic materials show great promise for forming advanced armor.

Researchers at the U.S. Naval Research Laboratory (NRL) have expanded their knowledge of nanocrystalline ceramic materials while searching for improved ceramic armor. Their work, in quest of stronger, lighter ceramic armor, explores the capabilities of a nanosintering technique that makes it possible to bond nano-sized particles together.

“A few years ago, NRL was the first to show that if you decrease the grain size of ceramics to tens of nanometers, the hardness and strength increase,” said Dr. James Wollmershauser, a materials research engineer in NRL’s Materials Science and Technology Division. “Our current work takes this much further. We decreased the grain size of the fully dense ceramics to record-breaking single digits, and analyzed the elasticity, hardness, energy dissipation, and fracture behavior in ceramics with a wide range of nanosize grains.”

Dr. Heonjune Ryou, a postdoctoral fellow in the U.S. Naval Research Laboratory’s Chemistry Division, operates machinery used in nanocrystalline ceramics research.

“NRL was the first to see the increase of energy dissipation in single digit nano-grain ceramics,” said Dr. Boris Feygelson, a materials research engineer in NRL’s Electronics Science and Technology Division, leading the team’s efforts in nanosintering. “The better the material can accommodate mechanical energy, the better it can stop an incoming threat.”

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications