Michigan State University
Mwrf 6191 Afrlmemspromo 0

Smart Materials Form MEMS Mirrors

Aug. 8, 2017
MEMS mirrors based on vanadium dioxide are being developed for military applications as a cooperative R&D agreement between the U.S. AFRL and Michigan State University.

Many commercial communications users rely on smartphones to make connections, but the U.S. Air Force Research Laboratory (AFRL) is looking at “smart” materials for electro-optical military applications. The smart material in question is vanadium dioxide (V02) and it is being teamed with microelectromechanical-systems (MEMS) device technology as a means of providing advanced optical solutions.

Working as part of a cooperative research and development agreement between the Air Force Research Laboratory Sensors Directorate and Michigan State University, the researchers developed MEMS mirror devices which can be used in a variety of applications, including optical phased-arrays, spectroscopy, optical switches, track positioning, microscopy, optical displays, and medical imaging.

Vanadium dioxide is attractive as a potential microactuator for various MEMS devices, supplying power to the devices. It is considered a smart material because it responds rapidly to a stimulus. In addition, it often provides a multifunction response, with many of its properties changing simultaneously in response to a stimulus. It can trigger a response with very little applied energy, compared to alternative MEMS microactuator approaches.

The cooperative agreement provides scientists from Michigan State University with access to Air Force facilities, personnel, and materials in order to create VO2  thin films and integrate them onto MEMS devices for testing. Air Force personnel participated in the device testing, data analysis, and new process design and optimization.

“Our collaboration with Michigan State University has been invaluable in advancing the science and technology of micro actuators and micro mirrors,” said Dr. John Ebel from AFRL’s Sensors Directorate. “Their expertise combined with AFRL’s unique fabrication capabilities and talents has greatly accelerated the pace of research for MEMS actuators and mirrors.”

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...