Preparation Is Key For The Future Of Circuit Design

March 17, 2006
What if we could go back 10 years and predict what the next decade of electronic design would bring? In the late 1990s, one of the crystal-ball forecasts of the electronics industry (from the ITRS SIA roadmap) looked out over the next 10 to 15 ...

What if we could go back 10 years and predict what the next decade of electronic design would bring? In the late 1990s, one of the crystal-ball forecasts of the electronics industry (from the ITRS SIA roadmap) looked out over the next 10 to 15 years. It predicted clock speeds edging into the low gigahertz range. When the roadmap was updated a few years later, predicted clock speeds rose to five to ten times that range. This change was due to disruptive technologies that were not anticipated in the earlier forecast.

The high-frequency design-software market must prepare for future disruptive technologies. Some of these requirements are obvious, such as the ever-present need for larger capacities and faster simulation in circuit and EM technologies. Some additional goals follow:

  • Digital is really analog: Analog RF design tools need to speak digital. At gigabit clock speeds, 1s and 0s behave more like analog signals than digital ones. Design software needs to make it easy to apply analog design techniques to high-speed digital design.
  • Enable innovation: Submicron-device geometries will push simulation capacity limits because of the high level of integration. They also will require substrate coupling and thermal effectsall of which will require new models and simulators. An infrastructure needs to be in place for developers to easily create models and implement them in standard languages for use by multiple vendors.
  • Smarter simulation: The simulators of the future will find creative ways to take large, complex designs, automatically partition them into easily solvable parts, and recombine them into the complete simulation.
  • Circuit models are accurate, but behavioral models are fast: With circuit models, brute-force simulations of large designs can become so lengthy as to be impractical. Behavioral models simulate faster, but sometimes lack the required accuracy. The gap between behavioral models and circuit-level designs must be closed in order to retain the required accuracy along with improved simulation speed.
  • Design software and instrumentation: Just as simulation technology evolves, measurement hardware will become more " designaware." Substantial links are needed between instrumentation for developing models and generating and capturing waveforms.
  • More from EM integration: While current EM simulators provide analysis of physical structures, the future need is for diagnosis identifying and locating sources of unwanted couplingand knowledge of design rules. This requires tighter links between EM and circuit simulation.

Agilent EEsof EDA, 395 Page Mill Rd., Palo Alto, CA 94306; (800) 829-4444, Internet: www.agilent.com/find/eesof.

See Author Photo

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.