Standards Befit Modular Approaches

Jan. 19, 2011
TO SOME ENGINEERS, a do-it-yourself modular test and measurement system seems to connote a sort of "Wild West" design mentality in which solutions are quickly patched together. They may not be compatible or be able to be managed by a common ...

TO SOME ENGINEERS, a do-it-yourself modular test and measurement system seems to connote a sort of "Wild West" design mentality in which solutions are quickly patched together. They may not be compatible or be able to be managed by a common software platform. In addition, support may be sorely lacking. With the larger test and measurement companies adding modular solutions to their roadmaps, however, many of these concerns are completely unfounded. In addition, standards are quickly being adopted and more widely leveraged in modular approaches. In the microwave and RF market, for example, PXI and its extensionAXIeare commonly at the heart of modular systems.

PCI eXtensions for Instrumentation (PXI) modular instrumentation vows to deliver a rugged, PC-based, and high-performance measurement and automation system. With this open standard, designers can take advantage of the low cost, performance, and flexibility of the latest PC technology. PXI combines standard PC technology from the CompactPCI specification with integrated timing and triggering to deliver a rugged platform with up to a 10X performance improvement over older architectures. (For more information, visit the PXI Systems Alliance.)

According to David A. Hall, National Instruments' Product Manager for RF and Wireless Test, "A wide range of RF and microwave measurementsfrom the basic spectrum sweep to modulation-quality measurements such as error vector magnitude (EVM)are generally processor-intensive and traditionally very slow. Using high-performance multicore CPUs inherent in PC-based instrumentation, many of these measurements can be performed 5X to 10X faster in PXI versus traditional rack-and-stack instrumentation. For any application involving automated testing, even the smallest improvement in measurement speed is a compelling benefit of modular instruments."

Hall continues, "A second unique benefit of modular instrumentation is its use in highly customized measurements in research and development. For example, in MIMO research, we've seen customers build custom MIMO measurement systems by combining multiple downconverters or upconverters into a single PXI chassis to create two, four, and even eight-channel RF signal generators and analyzers. For these customers, the modularity of PXI is not only a big cost savings, but it often allows customers to replace a full rack of instruments with a single PXI chassis."

PXI approaches also translate into lower price points, as they use inexpensive off-the-shelf PC components for the digital portion of the instrument. For an example, Hall points to a mid-range VSA like the NI PXIe-5663E 6.6 GHz RF signal analyzer. Although it retails for just $23,999, this signal analyzer achieves a typical displayed average noise level (DANL) of -158 dBm/Hz at 1 GHz. Hall predicts that we will see widespread industry adoption of PXI as the standard for automating RF and microwave measurements over the next two years.

For its part, Agilent is currently focusing its modular products on both PXI and AXIe. AXIe is a standard based on AdvancedTCA with extensions for instrumentation and test. The AXIe Consortium's goal is to provide an open standard that creates a robust ecosystem of components, products, and systems for generalpurpose instrumentation and semiconductor test. AXIe leverages existing standards from PXI, LXI, and IVI. (To learn more, visit www.axiestandard.org.)

According to Mike Millhaem, RF and Microwave Applications Engineer for Agilent's Modular Products Operation, "PXI has broad acceptance across the industry and provides a good starting point for our RF and microwave modular products. AXIe is a great extension to PXI, as it shares many common elements with PXI and allows for more complicated modules due to larger module size, higher per-slot power, and cooling capabilities. In 2010, Agilent introduced the M9392A, a 26.5-GHz vector signal analyzer in PXI. Going forward, we see continued demand for both traditional box instruments and modular instruments and plan to continue development in both areas."

Despite the sudden and growing rise of PXI test solutions, alternatives like VPX and PCI will continue to be leveraged in mainframe approaches. It is unlikely that one will eclipse the other, as they each offer unique advantages. For example, Don Mulder, VP/General Manager of Anritsu Co.'s Microwave Measurement Division, states, "VPX boards combine the inherent advantages of VMEbus, such as robustness and excellent EMC, with the latest high-bandwidth connector capabilities for high-speed differential signaling over the backplane. They also support wide temperature ranges due to advanced cooling methodologies. Plus, VPX boards are in a small 3U form factor." The VPX (also known as VITA 46) specifications deviate from the traditional connector scheme of VMEbus by merging the latest connector and packaging technology with the latest in bus and serial fabric technology.

On the other hand, Mulder notes, "PCI has a very proven track recordespecially in test instrumentsand it is relatively easy to design instruments with PCI boards. PCI also has low latency, which is one reason it remains popular for instrument control."

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...