Analyze Antenna EM In Time And Frequency Domains

Dec. 20, 2010
Ultra-wideband (Uwb) antenna far-field radiation is typically characterized by the numerical computation of radiation integrals. This computation involves the free-space dyadic Green's functions. It is usually carried out in the frequency ...

Ultra-wideband (Uwb) antenna far-field radiation is typically characterized by the numerical computation of radiation integrals. This computation involves the free-space dyadic Green's functions. It is usually carried out in the frequency domain with the electromagnetic (EM) field's spatial distribution. At Delft University of Technology, however, Diego Caratelli and Alexander Yarovoy have proposed a methodology for the accurate time- and frequency-domain analysis and modeling of wave radiation processes in UWB antennas. This methodology is based on the singularity expansion method.

In this approach, the transient EM-field distribution in the Fraunhofer region is presented in analytical closed form as the superposition of outgoing, propagating, non-uniform spherical waves. The time dependence of the wave amplitudes is determined by the resonant phenomena occurring in the structure. Thus, any time-domain integral-equation or finite-difference technique can be adopted to carry out the full-wave analysis within a volume surrounding the antenna. Such a technique also can be used to determine a spherical harmonic expansion of the equivalent electric and magnetic currents that were excited on a suitable Huygens surface enclosing the radiating structure.

The EM-field distribution in the Fraunhofer region can be evaluated by applying a modified singularity expansion method (SEM) and properly using the theory of advanced special functions for mathematical physics. See "Unified Time- and Frequency-Domain Approach for Accurate Modeling of Electromagnetic Radiation Processes in Ultrawideband Antennas," IEEE Transactions On Antennas And Propagation, October 2010, p. 3239.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...