Power-Detection System Covers UWB Spectrum

April 16, 2009
Many wireless coMMunications systems must be able to measure received signal strength. To provide sufficient bandwidth to cover the Ultra Wideband (UWB) spectrum, a pair of researchers has expanded on the capabilities of a previously introduced ...

Many wireless coMMunications systems must be able to measure received signal strength. To provide sufficient bandwidth to cover the Ultra Wideband (UWB) spectrum, a pair of researchers has expanded on the capabilities of a previously introduced system comprising an integrated CMOS broadband detector that uses the nonlinear behavior of a CMOS transistor in deep triode mode. The detector is now incorporated into a feedback loop for gain and filter control of an impulse-UWB receiver by Kenneth A. Townsend and James W. Haslett from the University of Calgary and TRLabs (Calgary, Canada).

The wideband RF power-detection system uses NMOS devices operating in the triode regime to generate an average current that is proportional to RF input power. Using a piecewise linear logarithmic approximation, the current is converted to voltage and then amplified. The power detector occupies an active area of 0.36 mm2 in a 0.18-m process. It consumes 10.8 mW from the power supply. When measured at discrete frequencies, error between the output and a linear-in-decibel best-fit curve is 2.4 dB for a 20-dB input range. It achieves 2.9 dB accuracy when dynamic range is defined to include all of the frequencies within the UWB spectrum.

The measured power metric is applied to an algorithm that tunes a notch filter to remove narrowband interferers from the UWB spectrum. For the algorithm to operate correctly, the power detector must produce a frequency-independent output within the band of interest. The output response varies by less than 1.8 dB for fixed input power as frequency is swept across the UWB spectrum. See "A Wideband Power Detection System Optimized for the UWB Spectrum," IEEE Journal Of Solid- State Circuits, February 2009, p. 371.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...