Implantable Microsystem Records Neural Activity

Nov. 17, 2009
To both understand neural functions and realize practical neural prostheses, most experts have concentrated on high-density arrays of silicon-based microelectrodes for recording neural activity in the central nervous system using a single ...

To both understand neural functions and realize practical neural prostheses, most experts have concentrated on high-density arrays of silicon-based microelectrodes for recording neural activity in the central nervous system using a single channel. Recently, an implantable wireless microsystem that can simultaneously record neural activity on 64 channels was developed by Amir M. Sodagar, Gayatri E. Perlin, Ying Yao, Khalil Najafi, and Kensall D. Wise from the University of Michigan's Engineering Research Center for Wireless Integrated MicroSystems. This system wirelessly transmits spike occurrences to an external interface. In addition, it allows the user to examine the spike waveforms on any channel with 8-b resolution. Signals are amplified by 60 dB with programmable bandwidths from under 100 Hz to 10 kHz.

Using a 2-MHz clock, the microsystem performs channel scanning for spike detection at a rate of 62.5 kSamples/s. It consumes only 14.4 mW power at 1.8 V. The 1.4-x-1.55-cm microsystem comprises a recording front end, neural processor, and bidirectional telemetry chip. Single-unit cortical activity is sensed by two- and three-dimensional electrode arrays comprising 64 sites. In addition, four 16-channel signal-preconditioning chips form a bank of 64 signal-preconditioning blocks. A 64-channel neural processing unit (NPU) performs spike thresholding or waveform digitization.

This system receives power, programming data, and a synchronized clock from the external setup via an inductive link. Its neural processor is based on a modular architecture, which can respond to developing needs in the future. See "An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording," IEEE Journal Of Solid-State Circuits, September 2009, p. 2591.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...