The SoC serves as the central processing unit running the instrument’s operating system and driving the 7-in. user display. Furthermore, the programmable-logic section of the device interfaces with the on-board ADC to capture and analyze user data.
Choosing a platform that could handle the demanding input signals and be able to provide a graphic user interface (GUI) in a single package is a significant advantage. The SoC made it possible to switch to a new user interface, aligning the TBS1000C with other Tektronix oscilloscopes. What resulted was a significant performance boost as well as an increase in the number of samples from 2,500 points to the current 20,000 points. The new system also improved the waveform capture rate from 500 to 5,000 waveforms/s.
The FPGA allows for more sophisticated signal processing. The family now supports runt trigger mode, which is useful for the analysis of digital signals. A “runt” in a signal is a pulse that doesn’t fulfill some aspect of its dc specification. For example, a signal may not be as high or fall as low as intended. Runts can cause all sorts of problems.
SoC Details
The Xilinx SoC device integrates a single-core Arm Cortex-A9 processor coupled with 28-nm Artix-7-based programmable logic, representing the lowest-cost entry point to the scalable platform (Fig. 3). The integration delivers high throughput between the programmable logic and processing system, providing a huge performance and cost advantage by sharing external memory (DRAM).