1. This diagram provides a simplified view of a 5G communications system.
Converting frequency measurements to the time domain, VNAs can even measure the distance to a fault to pinpoint where issues occur. Some VNAs, such as the Anritsu ShockLine MS46500B series, offer an Advanced Time Domain option that enables signal-integrity engineers to measure parameters such as time-domain reflection (TDR), time-domain transmission (TDT), and crosstalk. Furthermore, these analyzers are able to display an eye diagram based on simulated data being transmitted over a measured channel.
To move the massive amounts of data traffic expected in 5G communication systems between data centers and base stations, digital signals will often be converted from electrical to optical signals and back. VNAs can be used to help determine the efficiency at which these conversions happen. When combined with a well-characterized optical modulator or photodiode, VNAs can determine the transfer function of optical transmitters, receivers, and transceivers, including key parameters such as bandwidth, flatness, phase linearity, and group delay.
Testing 5G Base-Station Components
At the base station, unparalleled performance will be required of 5G radios and their RF components. Getting the most out of these components requires a deeper understanding of their behavior. VNAs are used to make measurements as early in the design process as the wafer stage, where S-parameter measurements can be conducted on devices to ensure expected performance or build device models.
Wafer-level measurements pose a unique set of challenges—VNAs need to de-embed the effects of fixtures and probes that enable the measurements. More accurate models lead to shorter design cycles as everyone races to be the first to offer 5G radio solutions. VNAs that cover frequency ranges from 70 kHz to 145 GHz in a single coaxial connection and utilize a wide range of standard embedding/de-embedding techniques allow signal-integrity engineers to realize the most accurate device models.
Lower-Cost Solutions
Among the performance requirements being placed on 5G radios is the need to handle much wider bandwidths, requiring radios to operate at higher frequencies than traditional communication systems. The move to microwave and millimeter-wave frequencies will require many more cell sites to account for the greater path losses at these frequencies.