Mwrf 1654 Mw1214randd Fig 1promo 0

De-Embed Parasitics from Millimeter-Wave ICs

Dec. 15, 2014
Using a half-thru transmission-line method, researchers from Grenoble, France, were able to accurately de-embed pad-interconnect and parasitic effects at millimeter-wave frequencies.

When characterizing an integrated circuit (IC), it is critical to de-embed parasitics and test-structure features. As RF ICs creep into the millimeter-wave frequencies, small geometries and the need for high-precision measurement techniques have made this task extremely difficult. A team from the University of Grenoble Alpes in France—Vipin Velayudhan, Emmanuel Pistono, and Jean-Daniel Arnould—has compared many de-embedding methods. They also have proposed a highly accurate method based on a half-through approach.

Of the three methods used to de-embed parasitics, only the cascaded and mixed methods are capable of describing millimeter-wave parasitics.

Their half-through method models the probe pads and interconnects using a matrix calculation, which is obtained directly from the S-parameters as test fixtures are de-embedded. This method removes the need to assume symmetry and equivalent models for pad-interconnect parasitics. To create the de-embedding model, three different S-parameter tests must be performed. First, a transmission line with ground-signal-ground (GSG) pads that are 100 μm in length must be tested for transmission and reflection. The same testing is then performed on a GSG transmission line that is 200 μm in length. Finally, a reflection test is performed on a half-through line that is terminated in a non-characteristic load.

The paper discusses the derivation of the equivalent model by converting S-parameters to ABCD matrices. Using the reflection coefficient of the half-through test and signal-flow graph theory, or Mason’s Rule, the researchers then extract the effects of the pads and interconnects referenced to 50 Ω. In comparison to other de-embedding methods, the paper claims that the half-through method outperforms other methods under simulation. The remaining work is to physically implement the half-through method to confirm performance expectations.

See  “Half-Thru de-embedding method for millimeter-wave and sub-millimeter-wave integrated circuits,” 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), June 2014, pg. 1.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...