Modelithics Prom Onew 5ef3bfe9efca7

Accurate Models and Discrete Part-Value Optimization Combine to Improve Workflows (.PDF Download)

June 17, 2020

Designing RF filters and other high-frequency circuits with today’s simulation software tools often involves performing some form of optimization to achieve the desired performance. For example, take the case of a lumped-element filter. Optimizing such a filter involves adjusting the values of its lumped components until the filter achieves an optimal frequency response.

However, once the component values have been determined via optimization, they may still need to be adjusted to the closest discrete, or “real-life,” manufacturer part values. Depending on the design’s complexity, this extra step can create a bit of extra legwork for the designer.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

Discover SiC FETs and the Role of Transformers in High-Voltage Applications