EM Co-Simulation with Measurement-Based Models Leads to First-Pass Design Success (.PDF Download)

Feb. 21, 2020

When simulating high-frequency filters with discrete passive components, it’s important to consider several factors to achieve simulation results that correspond to actual measured performance. One such aspect is the metallization that connects components together, as these metal interconnects impact the overall filter performance. In addition, component parasitics should be incorporated into a simulation to ensure that the simulated results accurately predict the filter’s response.

Fortunately, electromagnetic (EM) simulation software, such as Sonnet Suites from Sonnet Software, makes it possible to incorporate metal interconnects into a simulation. However, EM simulations that include ideal passive-component models often expose a discrepancy between simulated and measured performance, because ideal component models don’t account for the parasitics that are present in real-world parts.

Sponsored Recommendations

Getting Started with Python for VNA Automation

The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.