Dive into LNA Design

Dec. 30, 2016
This application note describes how the various capabilities of design software play a role in the development of a low-noise amplifier (LNA) at 10 GHz.
Image courtesy of National Instruments

A low-noise amplifier (LNA) is a critical component in a receiver design, as its performance heavily determines the receiver’s overall performance. Those involved with designing LNAs must ensure that noise figure is minimized while also being mindful of other parameters. In the application note, Design of a 10 GHz Low-Noise Amplifier,” National Instruments presents the design of an LNA that operates over a frequency range of 10.0 to 10.7 GHz. The NI AWR Design Environment is used to design and simulate the LNA.

The LNA is designed with the NE3515S02 heterojunction field-effect transistor (HJFET). At 10.4 GHz, this transistor has a minimum noise figure of approximately 0.3 dB along with roughly 12 dB of associated gain. Furthermore, a 12-mil-thick Rogers RO4003C laminate is used for the design.     

A waveguide-to-microstrip adapter is incorporated into the input section of the LNA. This adapter was simulated with the Analyst 3D electromagnetic (EM) simulator. The next step of the design process involves the planar structures, which are the amplifier stages and bandpass filter. The LNA consists of two amplifier stages, enabling it to achieve greater than 20 dB of gain. The bandpass filter is placed at the output of the second amplifier stage to reduce out-of-band gain.

Initially, the Microwave Office software was used to simulate and optimize the amplifier stages and bandpass filter via closed-form distributed transmission line models. Final adjustments and design verification were then achieved by using the AXIEM 3D planar EM simulator. The output transition is the final section of the overall RF design. This transition is realized with a coaxial connector that is placed perpendicular to the printed-circuit board (PCB).

The LNA’s enclosure is then described in detail. A specific cover is designed to prevent potential spurious oscillations. Lastly, 10 prototypes were assembled and measured. The measurements demonstrated good agreement with the simulated results, proving that the LNA has a gain of approximately 21 dB at 10.37 GHz. In addition, noise figure is below 0.6 dB across the entire 700-MHz band.

National Instruments Corp., 11500 N. Mopac Expwy., Austin, TX 78759-3504; (877) 388-1952

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...