Experiments Begin For Communications Testbed

May 9, 2013
In addition to raising its understanding of software-defined-radio (SDR) technologies and how they may aid NASA’s communications, this technology is expected to provide both cost savings and efficiency.

Recently, NASA’s Space Communications and Navigation (SCaN) testbed reached some important milestones. Checkout activities were completed on the testbed, establishing the status and health of the payload—including the antenna systems and software on each of three software-defined radios (SDRs). The SCaN testbed is an integrated communications laboratory facility. Using a new generation of SDR technology, it allows researchers to develop, test, and demonstrate advanced communications, networking, and navigation technologies in space.

This reconfigurable in-orbit laboratory offers broad participation to NASA, other government agencies, industry, and academia. Its radio communication technology is based on a new standard, which enables radio characteristics and functionality to be changed simply by altering the software.

Researchers expect the test bed to operate aboard the space station for as long as six years. Initial experiments include advancing S-band and Ka-band SDR technology and enhancing the capabilities of existing communications paths—especially in the Ka-band. An experiment with NASA’s latest Tracking and Data Relay Satellite (TDRS)-K will be the first in-orbit test and demonstration of a TDRS spacecraft acquiring and successfully auto-tracking a Ka-band user in low-Earth orbit.

These experiments will contribute data to the Space Telecommunications Radio Standard Compliant repository. They also will enable future hardware platforms to use common, reusable software modules to reduce development time and costs. NASA continues to solicit proposals to participate in the development, integration, and in-orbit execution of research and technology experiments and demonstrations using the testbed. The first users outside NASA are expected to demonstrate experiments on the SCaN testbed by 2014.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...