U-Shaped Waveguide Paves Way to THz ICs

U-Shaped Waveguide Paves Way to THz ICs

Feb. 8, 2019
Silicon-on-glass waveguide are considered as transmission lines for terahertz-frequency integrated circuits.

Overcrowding of signals at RF and microwave frequencies has created growing interest in millimeter-wave and even terahertz (THz) frequency bands for short-range applications. In turn, circuit designers are exploring ways to integrate different components and transmission lines at higher frequencies.

One of the transmission-line approaches for THz frequencies consists of a U-shaped silicon (Si) guiding channel attached to a glass substrate, such as Pyrex glass—a structure known as U-shaped silicon-on-glass (U-SOG). The Si guiding channel is etched from below the guiding channel to reduce interaction of the modal fields with the Pyrex substrate material, resulting in a low attenuation constant for the waveguide structure.

Nazy Ranjkesh and fellow researchers from the University of Waterloo (Ontario, Canada) designed a U-SOG waveguide structure with the aid of High Frequency Structure Simulator (HFSS) modeling software from Keysight Technologies along with the same company’s PNA-X vector network analyzers (VNAs) and a specially designed test fixture. The attenuation constants for the U-SOG waveguide structure compare closely between simulated and measured values, with low attenuation from 800 GHz through 1.1 THz.

Simulated values are usually less than the measurements, due to the difficulty of achieving proper alignments between the U-SOG structure and the standard metallic waveguide test fixtures. But compared with other transmission-line technologies, including metallic waveguide, the U-SOG approach does quite well in preserving signal power even at these high frequencies, making it a good candidate for on-chip transmission lines and integrated circuits at THz frequencies.

See “1.1 THz U-Silicon-On-Glass (U-SOG) Waveguide: A Low-Loss Platform for THz High-Density Integrated Circuits,” IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 6, November 2018, pp. 702-709.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...