Learn to Overcome Phase Noise

March 28, 2017
This tech brief discusses phase-noise basics, and explains how proper component selection can optimize system performance.

Phase noise is a critical parameter in sophisticated radar systems, as well as other types of communication systems. For example, a receiver’s sensitivity can be improved by minimizing phase noise. In the tech brief, “Addressing Phase Noise Challenges in Radar and Communication Systems,” Custom MMIC discusses the importance of phase noise, and breaks down various approaches to overcome the problem.

Initially, the tech brief explains how phase noise is commonly used to define an oscillator’s frequency stability. The phase-noise performance of an oscillator ultimately affects the performance of the system in which it is incorporated. Phase noise can impact the performance of many RF/microwave systems, but the document focuses two in particular: direct-downconversion receivers and radar systems.

Optimizing the phase noise of an oscillator will obviously help to achieve the required system performance. However, the paper points out that an amplifier is often used to increase an oscillator’s output power level in order to sufficiently drive a mixer’s local-oscillator (LO) port. Unfortunately, the amplifier increases the phase noise of the LO signal—all devices add noise power to an input spectrum due to 1/f noise, or pink noise. No doubt, then, that the presence of this amplifier could lead to problems.

A phase-noise plot of a low-noise amplifier (LNA) is provided in the paper. If this noise level is greater than the phase noise of the input signal, the amplifier noise would actually have a greater effect on the output noise spectrum. Therefore, the benefit of using an oscillator with low phase noise is essentially negated due to the phase noise generated by the amplifier.

Amplifier phase noise can be overcome by looking into the device’s physics. Specifically, the document explains why gallium-arsenide (GaAs) bipolar devices are beneficial in terms of phase-noise performance. It goes on to mention several of Custom MMIC’s low-phase-noise amplifiers based on GaAs heterojunction-bipolar-transistor (HBT) technology. The tech brief concludes by discussing how frequency multipliers also can impact phase-noise performance.

Custom MMIC, 300 Apollo Dr., Chelmsford, MA 01824; (978) 467-4290;

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...