Xray

SIW Cavity Antenna Resonates at 340 GHz

Feb. 29, 2016
Researchers have developed an on-chip antenna (OCA) capable of high gain and high radiation efficiency at 340 GHz.

Terahertz frequencies (about 100 GHz) offer great promise for detecting a wide range of objects, from cancer cells to concealed weapons. To make such high frequencies more practical, researchers at China’s Nanjing University of Science and Technology and the Semiconductor Device Research Laboratory of the China Academy of Engineering Physics developed an on-chip antenna (OCA) capable of high gain and high radiation efficiency at 340 GHz.

The terahertz antenna was designed with a standard 0.13-μm silicon-germanium (SiGe) BiCMOS semiconductor technology without postprocessing. The antenna incorporates a rectangular slop loop etched into the upper wall of a substrate-integrated-waveguide (SIW) circuit to form a magnetic current loop radiator. The SIW structure forms a back cavity to suppress surface waves and separate the radiating aperture from the substrate.

The researchers created both single antenna elements and a 2 × 2 antenna array to demonstrate the concept. The SIW back cavity resonates at the dominant mode, with EM energy accumulating inside the cavity and the cavity preventing energy absorption by the substrate material. The result is an antenna element with high gin and frequency range of 335 to 348 GHz and an antenna array with maximum gain of 7.9 dBi and efficiency of 48% at 340 GHz.

The SiGe BiCMOS process involves seven metal layers fabricated on a 300- μm-thick silicon substrate, with the two top metal layers isolated by a 10-μm-thick silicon-dioxide layer. The silicon substrate has a dielectric constant of 11.9 and resistivity of 10 Ω-cm. The chip size of the standalone antenna is 0.7 × 0.7 mm2 and the antenna array chip measures 1.1 × 1.1 mm2. The OCAs were characterized by means of a commercial vector network analyzer (VNA) and frequency extender for measurements from 220 to 347 GHz. See “340-GHz SIW Cavity-Backed Magnetic Rectangular Slot Loop Antennas and Arrays in Silicon Technology,” IEEE Transactions on Antennas and Propagation, December 2015, p. 5,272.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.
About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...