Automotive radar

Dual-Layer Transmit-Array Powers Automotive Radar

Nov. 2, 2015
A 77-GHz transmit-array is designed with dual-layers PCBs for automotive radar applications.

Automotive radar applications, such as intelligent cruise control (ICC) and collision-avoidance radar, require highly directional antennas. These antennas must have the capability to distinguish targets in a predetermined field-of-view (FOV). Printed antenna arrays are a preferred choice, but they can have large feed network losses. In addition, the antenna array’s weight may produce cracks in the solder balls upon circuit integration. The free-space beam-forming technique can eliminate feed network losses and improve antenna performance at millimeter-wave frequencies and higher. The transmit-array is one form of this technique. To demonstrate its capability, researchers from Singapore developed a 77-GHz dual-layer transmit-array for automotive radar applications.

The researchers designed the transmit-array by etching coplanar patch unit-cells on opposite sides of a printed-circuit board (PCB). Four high-gain beams are generated by combining the transmit-array with four substrate-integrated waveguide (SIW) slot antennas, which serve as the primary feeds. Computer Simulation Technology (CST) Microwave Studio was used to simulate the unit-cells. A test fixture was designed to hold and align both the SIW slot primary feeds and the coplanar transmit-array. The test equipment used to perform measurements included a customized Cascade Microtech probe station and an E8361A network analyzer from Keysight Technologies. The measured gain of the coplanar transmit-array antenna prototype was 18.5 dBi for the ports at 76.5 GHz, demonstrating agreement with the simulated results.

See “77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications,” IEEE Transactions on Antennas and Propagation, June 2015, p. 2,833.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...