Lens Features 77-GHz Sectorial RadiationPattern

April 20, 2010
For wireless-communications applications like base stations, sectorial radiation patterns are frequently used. Yet such antennas also have proven themselves adept at handling measurement system applications like in a lens-based compact antenna ...

For wireless-communications applications like base stations, sectorial radiation patterns are frequently used. Yet such antennas also have proven themselves adept at handling measurement system applications like in a lens-based compact antenna test range (CATR). Some recent work covers the design, fabrication, and measurements of an axisymmetric dielectric lens that features a sectorial radiation pattern at 77 GHz. This antenna was developed by M. Multari, J. Lanteri, J.L. Le Sonn, L. Brochier, C. Pichot, and C. Migliaccio from France's University of Nice-Sophia Antipolis together with J.L. Desvilles from Orange Labs and P. Feil from German's University of Ulm.

For W-band measurements, this lens-based CATR provides an output plane wave that is 25 cm in diameter. Thanks to the symmetry of revolution, the sectorial lens profile can be designed in one dimension using phase-only control. The phase variation is echoed on the lens depth. The researchers fabricated two lenses: one with polyvinyl chloride (PVC) and the other with polyurethane. For the polyurethane lens, which was the preferred choice, less than 0.2 dB ripple was obtained in the central beam. Relatively high secondary lobes did occur at 11 deg., however.

To simulate the stepped lens, France Telecom Orange Labs' SRSRD software was used. The lens was then measured in an anechoic chamber at 77 GHz. Using numerical simulations, comparisons were conducted between the near field of a CATR illuminated by a small horn providing a uniform amplitude taper and the sectorial lens. On-axis oscillations went from 6 to 1 dB with the sectorial lens. See "77 GHz Stepped Lens with Sectorial Radiation Pattern as Primary Feed of a Lens Based CATR," IEEE Transactions On Antennas And Propagation, January 2010, p. 207.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...