Inkjet Printing Produces RFID Antenna

Nov. 17, 2009
Desptie its popularity, radio-frequency identification's (RFID's) progress could be hampered by cost, reliability, the need for environmentally friendly materials, and the requirements put on tags by worldwide regulatory efforts. Such challenges ...

Desptie its popularity, radio-frequency identification's (RFID's) progress could be hampered by cost, reliability, the need for environmentally friendly materials, and the requirements put on tags by worldwide regulatory efforts. Such challenges could be easily conquered by the inkjet printing of antennas and matching networks on low-cost, paper-based materials. At the Georgia Institute of Technology, Amin Rida, Li Yang, Rushi Vyas, and Manos M. Tentzeris have presented a compact, inkjet-printed, ultra-high-frequency (UHF) passive- RFID antenna as a demonstration prototype.

In using paper as a substrate for high-frequency applications, the researchers found that it had good electrical/dielectric performance to at least 1 GHz. Because of the wide variety of types of paper, it is essential to perform dielectric RF characterization of paper substrates before the RF on-paper designs. To measure the dielectric constant and loss tangent of paper to 2 GHz, a microstrip-ring resonator was designed. Typical SMA coaxial connectors were used to feed the ring-resonator structure. The through-reflect-lines (TRL) calibration method was employed to de-embed the effect of the feeding lines. Insertion-loss measurements were performed from 0.4 to 1.9 GHz using an 8530A vector network analyzer (VNA) from Agilent Technologies.

The researchers designed and fabricated a T-match folded-bowtie, half-wavelength dipole antenna on commercial photo paper using an inkjet printer. The antenna was designed using Ansoft's HFSS 3D electromagnetic (EM) solver. They also demonstrated the capabilities of inkjet printing technology in integrating wireless sensors on paper, thereby bridging RFID and sensing technology. See "Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications," IEEE Antennas And Propagation Magazine, June 2009, p. 13.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.