PA MMIC Leverages GaN-On-SiC HEMT Technology

Jan. 26, 2010
MODERN ELECTRONIC-WARFARE (EW) systems require amplifiers with high power, wide bandwidth, and high efficiency. One way to increase output power for high-bandwidth applications is to use a highvoltage transistor technology. Today's galliumnitride ...

MODERN ELECTRONIC-WARFARE (EW) systems require amplifiers with high power, wide bandwidth, and high efficiency. One way to increase output power for high-bandwidth applications is to use a highvoltage transistor technology. Today's galliumnitride (GaN) transistors operate with nearly an order-of-magnitude increase in power-supply voltage while delivering gain and efficiency that rival gallium-arsenide (GaAs) PHEMT devices. At TriQuint Semiconductor, the design and measured continuous-wave (CW) performance of a GaNon- silicon-carbide (SiC), nonuniform-distributedpower- amplifier (NDPA) monolithic microwave integrated circuit (MMIC) has been presented by Charles Campbell, Cathy Lee, Victoria Williams, Ming-Yih Kao, Hua-Quen Tserng, Paul Saunier, and Tony Balisteri.

This amplifier covers 1.5 to 17 GHz. From a 30-V supply, experimental results credit the PA with more than 10 dB small signal gain, 9 to 15 W saturated output power, and 20 to 38 percent peak power-added efficiency. The amplifier utilizes dual field-plate, 0.25-m GaN-on-SiC device technology integrated into TriQuint's three-metal-interconnect (3MI) process technology. That technology features high-density capacitors (1200 pF/mm2), thick plated lines (6.77 m), and capacitors that are constructed directly over substrate vias.

The PA's epitaxial structure has a Si GaN buffer with advanced Fe doping to improve isolation. An AlN spacer is inserted between the buffer and AlGaN Schottky barrier layer. To provide better leakage performance, the surface is terminated by a GaN cap layer. The active device epitaxial layers are isolated by performing a mesa etch to the GaN buffer. See "A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology," IEEE Journal Of Solid-State Circuits, October 2009, p. 2640.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.