64.8-GHz Divider Races On 0.13-m CMOS

WITH THE RAPID PROGRESS of complementary-metal-oxide-semiconductor (CMOS) technology, it has become more cost effective to realize 60-GHz receiver front-end circuits or even parts of a complete transceiver in 0.13-m CMOS. Recently, a team of ...
May 18, 2010
2 min read

WITH THE RAPID PROGRESS of complementary-metal-oxide-semiconductor (CMOS) technology, it has become more cost effective to realize 60-GHz receiver front-end circuits or even parts of a complete transceiver in 0.13-m CMOS. Recently, a team of researchers reported a low-power and wide-locking-range, 64.8-GHz injection-locked frequency divider (ILFD) using standard 0.13-m CMOS. A wide locking range of 10.2 GHz from 54.6 to 64.8 GHz (17 percent) was achieved by Chang-Zhi Chen, Tsung-Yen Chen, and Yo-Sheng Lin from China's National Chi Nan University together with Guo-Wei Huang from Taiwan's National Nano Device Laboratory.

The ILFD can be operated with -60 dBm input power. It requires 3.39 mW from a 1-V supply. The chip, which measures 0.90 x 0.73 mm without the test pads, uses a shunt inductor in the source node of the cross-coupled transistor pair to enhance the locking range. In addition, the inductors and capacitors of the LC tank were implemented by low-Q, micro-stripline inductors and high-Q varactors, respectively. A bias circuit also was included to stabilize the tail current source.

Because the divider's internal power is lowered by the large parasitic capacitance, the researchers introduced a shunt inductor at the load node of a tail transistor to maximize its load impedance. As a result, both the divider's locking range and input sensitivity were enhanced. Under +4 dBm injection power, the proposed ILFD achieved a locking range of 8.8 GHz. See "Excellent Sensitivity 64.8-GHz CMOS Injection-Locked Frequency Divider with 10.2-GHz Locking Range," Microwave And Optical Technology Letters, March 2010, p. 518.

About the Author

Nancy Friedrich

Nancy Friedrich

RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sign up for our eNewsletters
Get the latest news and updates