Antenna Targets Pulsed UWB Applications

Oct. 14, 2010
An original antenna dubbed the shark has been developed for pulsed ultra-wideband (UWB) applications. Because this antenna also can be used to form an array, a high-power ultra-wideband (UWB) radiation source can be obtained from 800 MHz to 8 ...

An original antenna dubbed the shark has been developed for pulsed ultra-wideband (UWB) applications. Because this antenna also can be used to form an array, a high-power ultra-wideband (UWB) radiation source can be obtained from 800 MHz to 8 GHz. This development was spawned by Valrie Bertrand from France's Center of Technology Transfer CISTEME together with Laurent Desrumaux, Adrien Godard, Michle Lalande, Jol Andrieu, and Bernard Jecko from the XLIM Research Institute at the University of Limoges/ National Center for Scientific Research.

To serve as a pulse radiation source, the elementary antenna must be compact and non-dispersive while the array must have a high transient frontto- back ratio. The radiation system appears in the form of an N generators/N antennas architecture, which allows any number of antennas to be considered in the array design. The system allows radiation power to be increased by adding antenna elements while providing flexibility for the array. Of course, the radiating sources must be tightly synchronized. Thanks to the optical control of the sources, the radiated power can be summed while the pulsed radiant beam is easily steered.

To satisfy a UWB high-power radiation application, the antenna had to be matched over a frequency band of at least one decade. It also had to be minimally dispersive in order to radiate discrete waves and make the system stealthy. To conceive the array, the radiation pattern of the antenna had to be either directive or sectoral. It also had to be miniature in at least two directions. The Shark antenna boasts a bandwidth higher than 25:1. See "An Original Antenna for Transient High Power UWB Arrays: The Shark Antenna," IEEE Transactions On Antennas And Propagation, August 2010, p. 2515.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications