The resulting scattering parameters (S12 for coupling and S14 for isolation) that were obtained using an adapted numerical model6 are plotted from 1 to 10 GHz in Fig. 5. The results indicate
that the target desired coupling of 20 dB is achieved from 4 to 6 GHz, with minimum directivity of 25 dB.
In summary, the closed-form equations presented here provide accurate calculations for the dimensions of coupled sliced coaxial cables used for microwave couplers at characteristic impedances of 50 or 75 Ω. These expressions deduced from the finite element method are valid in a wide range of values for the coupling coefficient and the dielectric constant. The formulas were used as the basis for designing a directional coupler, which delivered 20 dB coupling at 5 GHz.
REFERENCES
1. N. Ben Ahmed and M. Feham, "Finite element analysis of RF couplers with sliced coaxial cable," Microwave Journal, Vol. 43, No. 11, November 2000, pp 106-120.
2. N. Ben Ahmed and M. Feham, "Rigorous analytical expressions for electromagnetic parameters of transmission lines: Coupled sliced coaxial cable," Microwave Journal, Vol. 44, No. 11, November 2001, pp 130-138.
3. H. An, O. Monti, R.G. Bossio, and K. Wu, "A novel type of low cost high performance coaxial cable coupler," 25th European Microwave Conference (EuMG'95), 1995.
4. H. An, R.G. Bossio, and K. Wu, "Ultra wide band directional couplers with coaxial cable," Canadian Conference on Electronics And Computer Engineering, 1995.
5. H. An, T. Wang, R.G. Bossio, and K. Wu, "Accurate closed form expression for characteristic impedance of coupled line with sliced coaxial cable," IEE 1995.
6. A.R. Djordjevic, D. Darco, M.C. Goran, and T.K. Sarkan, Circuit Analysis Models for Multiconductors Transmission Lines, Artech House, Norwood, MA, 1997.