Image

Find the Key to Broadband PA Design

May 4, 2016
This application note demonstrates a simulation-based approach for designing a broadband gallium-nitride (GaN) power amplifier (PA).
Download this article in .PDF format
This file type includes high-resolution graphics and schematics when applicable.

A simulation-based methodology for broadband power-amplifier (PA) design can be accomplished using load-line, load-pull, and real-frequency synthesis techniques. Thus, by taking advantage of simulation software and nonlinear transistor models, the design process can be streamlined. In the application note, “A Simulation-Based Flow for Broadband GaN Power Amplifier Design,” National Instruments presents the design of a Class F PA using a gallium-nitride (GaN) high-electron-mobility transistor (HEMT). The design is achieved by utilizing a nonlinear model of the transistor with the NI AWR Design Environment.

A schematic was first created to bias and stabilize the transistor. Once the biasing and stability conditions were established, the initial load-line analysis and harmonic impedance tuning was performed. After determining the impedance of the fundamental frequency, the second- and third-harmonic impedances were tuned to a short circuit and an open circuit, respectively. The fundamental impedance of the input tuner was set to a conjugate match, thus providing maximum gain. Once all of the impedances were tuned, a final harmonic-balance (HB) simulation was performed to confirm the desired mode of operation.

The application note goes on to describe a load-pull impedance extraction method, which was performed at three different frequencies: 1.8, 2.0, and 2.2 GHz. Load-pull simulations were executed to generate contours for maximum power and then for maximum drain efficiency. The maximum power and efficiency contours at the fundamental frequency were both superimposed on a Smith Chart. By using this approach, a region of mutually acceptable power and efficiency could be determined. Load-pull simulations for the second- and third-harmonic frequencies were then performed.

The Amplifier Design Wizard (ADW) tool synthesized the broadband matching networks once all impedances were determined. Both the output and input matching networks were designed and subsequently exported to the Microwave Office software. Linear, HB, electromagnetic (EM), and dc simulations were performed to fine-tune the design. The actual PA was later built and tested without any bench tuning, demonstrating agreement with the simulation results.

National Instruments Corp., 11500 N Mopac Expwy., Austin, TX 78759-3504; (877) 388-1952; www.ni.com.

Looking for parts? Go to SourceESB.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...