Why Does The Internet of Things Need Different Wireless Standards?

April 28, 2015
Though a variety of wireless standards may be necessary to complete a range of Internet of Things solutions, their growing numbers make it difficult to choose the right one.
1. Personal, local, national, and world area networks are an extension concept representing the growth of interconnectivity worldwide.

The exploding global market for wirelessly interconnected devices has RF/microwave companies working diligently to develop technologies and create solutions for an Internet of Things (IoT) world. Key to the process is choosing the right wireless protocols and wireless networking technology when implementing IoT solutions. In an application note from Texas Instruments, titled “Wireless Connectivity for the Internet of Things,” the author provides an overview of the wireless technologies connecting commercial and industrial devices.

Among the critical factors cited are an IoT solution’s network range and topology. In terms of network ranges, choices include personal-area networks (PANs), local-area networks (LANs), neighborhood-area networks (NANs), and wide-area networks (WANs). Different technologies will better suit the key features of each network range, though. For example, Bluetooth is a common solution for PAN systems, but isn’t as well equipped for LAN systems (unlike WiFi).

Power and noise are the main limiting factors for throughput and range. As a result, each wireless technology leverages a variety of techniques to balance throughput and range with respect to its application. Generally, a network with a wider range will require more transmit power. Also, the maximum data rate of transmission will be lower.

2. There are trade-offs with the benefits between the various wireless networking and peer-to-peer technologies.

A mesh network topology can be created to increase a network’s range without boosting the power and coverage area of a single node. A mesh network differs from a star network in that all of the nodes of a mesh network can exchange data to each other. They can even hop data from one node through another, and then onto the third node.

Many IoT and wireless-networking companies lack the resources or justification for producing their own proprietary wireless-networking standard. As a result, they must choose from already existing common standards. From sub-1-GHz to ZigBee/Bluetooth, the various wireless-networking standards each have strengths in different application spaces. They also operate with different network topologies in mind. The latest device concepts, for example, have configurable RF front-ends capable of multiple wireless standards, high-security systems, and ease of integration.

Texas Instruments, 12500 TI Boulevard Dallas, Texas 75265, 972-995-2011

About the Author

Jean-Jacques DeLisle

Jean-Jacques graduated from the Rochester Institute of Technology, where he completed his Master of Science in Electrical Engineering. In his studies, Jean-Jacques focused on Control Systems Design, Mixed-Signal IC Design, and RF Design. His research focus was in smart-sensor platform design for RF connector applications for the telecommunications industry. During his research, Jean-Jacques developed a passion for the field of RF/microwaves and expanded his knowledge by doing R&D for the telecommunications industry.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...