Mwrf 1814 05epromo3 0

MMIC Quadruples Frequencies into Millimeter-Wave Bands

April 22, 2015
For 5G to be realized, circuit designs must aid current technologies in reaching the millimeter-wave bands cost-effectively without minimizing performance.
1. Upconverting microwave signals via multiplication techniques can generate millimeter-wave frequencies. However, this approach does sacrifice some signal-quality parameters.

The design and fabrication of technology for natively generating and modulating millimeter-wave signals is expensive and complex. Thus, researchers need techniques and typologies to upconvert or multiply lower-frequency signals. On that front, Catherine Algani of the ESYCOM Laboratory-CNAM, France, together with Wafae El Hamdani, Said Mazer, Moulhime El Bekkali, and Maryam Abata of the Laboratory of Information Processing and Transmission of Sidi Mohamed Ben Abdellah University, Morocco, used the UMS foundry’s PH15 to design a frequency quadrupler that operates at millimeter-wave frequencies.

2. In the microwave and millimeter-wave frequencies, inductor and capacitive components in filter networks may be on the order of hundreds of femtofarads and picohenries.

The research team worked with the UMS foundry to combine monolithic-microwave-integrated-circuit (MMIC) technology with the PH15 process. As a result, the researchers were able to develop a single-stage quadrupler operating with a 14- to 16-GHz local oscillator. The UMS foundry process is based on pseudomorphic-high-electron-mobility (PHEMT) field-effect transistors (FETs). Gate widths of 70.00 and 0.15 μm were used to develop the mutliplier’s circuit components, a quadrupler, a high-pass filter, and a buffer amplifier.

The conclusive design stemming from the research was a quadrupler that reached 60 GHz with a conversion gain of –4.2 dB. The quadrupler demonstrated high harmonic rejection of the second, third, and fourth harmonics to 18.8 dB of the third harmonic. See “Design of a MMIC Frequency Quadrupler In Millimeter-Wave Band,” 2014 International Conference on Multimedia Computing and Systems (ICMCS), Apr. 2014, pg. 1506.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...