Mwrf 1737 Mw0215app Notes Fig 1web 0

These 11 Specifications Define PIN-Diode Switches

Feb. 21, 2015
From switch type to compression point, PIN-diode-switch parameters must be precisely specified during system-level design to ensure functional or optimized end products.
When VSWR must be controlled in the off-state of a PIN-diode switch, off-arm terminations aid in reducing the reflections (as long as the primary load is not engaged).

PIN-diode switches come in many shapes, sizes, and operation ranges. When planning a project, system-level designers need to account for several to thousands of these switches. Thus, a detailed knowledge of the parameters of a PIN-diode switch becomes paramount, since they form part of the device’s signal chain. To illuminate the most essential parameters, American Microwave offers an application note titled “How To Specify Pin Diode Switches.” The document expounds upon the six key, and five secondary, PIN-diode parameters that are required to specify PIN diodes within a system.

Of the hundreds of device parameters, the six key PIN-diode switch specs include type, operating frequency band, insertion loss, isolation, switching speed, and power handling. Switch type can range from single to multiple poles and from single-throw to 32 throws. The more complex a switch, the less common it will be in the marketplace. According to the note, this factor also applies to the frequency range of operation. While lower-frequency video and high-frequency switches are frequently found, extreme-microwave and millimeter-wave PIN-diode switches tend to be less available.

Insertion loss and isolation are the electrical properties associated with quality of design and manufacture. Insertion loss depends on two factors: the conductor/transmission-line interconnect within the switch, and how well the signal paths are matched. In contrast, isolation depends on the series or shunt connection of the switch. A variety of techniques exist specifically for maximizing isolation at broadband or narrowband frequencies.

Two parameters at odds with each other are switching speed and power handling. Handling greater power requires a larger device. Increased size, in turn, multiplies the parasitics that lower switching speed.

The note breaks down the key specifications further by detailing five secondary parameters: logic-compatible driver type/speed, phase tracking, off-arm terminations, intercept point, and video transients. These parameters require a grasp of the switch’s application, the specific requirements of its higher-level assembly, and compliance requirements. Many of these parameters demand tradeoff considerations. As a result, the note recommends a study of those tradeoffs in accordance with the value of the specification within the application.

American Microwave Corp., 7309-A Grove Rd.,  Frederick, MD 21704, (301) 662-4700

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.