Mwrf 1368 05h Fig 3promo 0

GaN MMICs For Small Cells Get A Doherty Power Boost

May 12, 2014
Saving cost and space is a significant incentive for integrating the parts of microwave power amplifiers. There is a tradeoff of performance that could be enhanced by external passive components and clever power splitting in PAs.

Using a 0.25-μm gallium-nitride-on-silicon-carbide (GaN-on-SiC) process, a monolithic-microwave-integrated-circuit (MMIC) power amplifier (PA) promises to meet the power, size, and cost considerations of small-cell applications. With support from the IT R&D Program of MSIP/KEIT, Republic of Korea, Cheol Ho Kim, Seunghoon Jee, Gweon-Do Jo, Kwangchun Lee, and Bumman Kim designed and tested the 2.14-GHz hybrid-Doherty PA. To achieve low part count and reasonable efficiencies in a compact package, the team used an unconventional and uneven power-splitting technique.

A compact PA design takes advantage of the size-reduction capabilities of a GaN-on-SiC MMIC while using low-loss chip inductors for efficiency enhancements.

For the nonsymmetrical configuration, different-sized PAs were used. The peak amplifier was sized larger than the carrier amplifier for greater backoff characteristics, which resulted in a higher peak-to-average power ratio (PAPR). This design decision helped the PA achieve a higher data rate capable of supporting 4G and LTE requirements. To further reduce size, low-loss chip inductors were placed around the MMIC die. They reduced the inductor circuit footprint by a factor of 10.

Exhibiting a high drain efficiency of 52.7%, the PA provided output power to +22.2 dBm. It achieves an adjacent power leakage rate of -49.6 dBc for an LTE signal. The peak-to-average power ratio (PAPR) reached 7.1 dB after the digital-predistortion linearization. See “A 2.14-GHz GaN MMIC Doherty Power Amplifier for Small-Cell Base Stations,” IEEE Microwave and Wireless Components Letters, April 2014, p. 263.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.