The DPR consists of two radars a Kaband precipitation radar KaPR at 355 GHz and a Kuband precipitation radar KuPR at 13 GHz Photo courtesy of NASA

Precipitation Radar Employs Variable Pulse Repetition

March 21, 2014
The dual-frequency precipitation radar aboard the Core Observatory satellite uses variable pulse repetition to make detailed measurements about rainfall structure and intensity.

During space missions, long-range observation often causes delays between receiving and transmitting signals. But efficient sampling can be achieved by transmitting pulses successively. This method of variable pulse repetition frequency (VPRF) is currently being utilized by the dual-frequency precipitation radar (DPR) aboard the Global Precipitation Measurement (GPM) Core Observatory satellite. That mission seeks to better understand the Earth’s weather and climate cycles by more accurately measuring precipitation.

The DPR was developed by the Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communication Technology in Tokyo. Using emitted radar pulses, it makes detailed measurements of rainfall’s three-dimensional structure and intensity. This approach allows researchers to improve estimates of how much water the precipitation holds.

The instrument consists of two radars: a Ka-band precipitation radar (KaPR) at 35.5 GHz and a Ku-band precipitation radar (KuPR) at 13 GHz. The KaPR detects snow and light rain while the KuPR detects heavy rain. Combined, the DPR has 190-kb/s bandwidth over the 1553B spacecraft data bus.

Image courtesy of the JAXA presentation, "Draft plan of JAXA’s GPM/DPR standard and research products"

The instrument has a vertical range resolution of 250 m, which provides vertical information at scales needed to resolve cloud structures. Both channels scan the beams in the cross-track direction to broaden observation areas. This effort is aided by the VPRF technique (see figure), which increases the number of samples at each instantaneous field of view (IFOV) and realizes 0.2 mm/h sensitivity. Such sensitivity allows for insight into the microphysical processes—evaporation, collision/coalescence, aggregation—that helps to distinguish regions of precipitation.

The satellite also houses a global microwave imager (GMI) that uses highly sensitive frequencies to discriminate between the noise and signatures of small particles of precipitation (see “Precipitation Microwave Imager Flexes Its Frequency Range” on Microwaves & RF). Together, the instruments provide a three-dimensional view of the column of precipitation. The Core Observatory satellite was successfully launched from Tanegashima Space Center, Japan in February 2014.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...