Mwrf 1120 Wificommunications 0

Megahertz-Range Wireless-Power-Transfer Rectifiers Resonant To Regulate

Jan. 10, 2014
The goal of efficient and compact wireless energy transfer is driving innovations with resonant circuits so that more applications can ditch the wire.
Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

As more products are designed with wireless charging capability, resonant wireless-power-transfer (WPT) technology is increasingly present in the wireless market. Having faster and more reliable charge rates—while using less expensive or space-consuming electronics—is a major goal for this industry. At the Korea Advanced Institute of Science and Technology, Jun-Han Choi, Sung-Ku Yeo, Seho Park, Jeong-Seok Lee, and Gyu-Hyeong Cho designed and tested several resonant regulating rectifiers for enhanced WPT capability at 6.78 MHz.

On 0.35-micrometer bipolar-CMOS-DMOS (BCD) technology, the team is able to design RWPT circuits that can harvest power to 6 W at 86% efficiency using both the continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The proposed resonant-regulating-rectifier designs do not require an additional inductor for switch-mode regulation, as the resonant tanks are operated using phaser-transformed inductance. Only three switches are used in a rectifier design that achieves 6 W of transferable power. Such a feat is impressive when compared to other resonant-regulating-rectifier systems that have been reported, which have less than 1 W of available power at 13.56 MHz. See “Resonant Regulating Rectifiers (3R) Operating for 6.78 MHz Resonant Wireless Power Transfer (RWPT),” IEEE Journal of Solid-State Circuits, Dec. 2013, p. 2989.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...