Image

288-GHz CMOS Source Radiates -4.1 dBm

Nov. 4, 2013
This all CMOS submillimeter wave imaging chipset comprises two magnetically coupled, balanced triple-push oscillator cores with an on-chip antenna.
Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

At 300 GHz and beyond, room-temperature imaging detectors—and incoherent direct detectors in particular—lack the sensitivity of a low-noise amplifier (LNA). As a result, only active imaging approaches provide the needed signal-to-noise ratio (SNR). This issue has underscored the need for robust, lightweight, and low-cost power sources in the sub-millimeter-wave range. Above 200 GHz, however, the output power of both electronic and photonic signal sources rapidly drops. At Germany’s University of Wuppertal, a 288-GHz lens-integrated, high-power source has been implemented in 65-nm CMOS by Janusz Grzyb, Yan Zhao, and Ullrich Pfeiffer.

Two free-running triple-push ring oscillators, which are locked out of phase by magnetic coupling, comprise the engineers’ source. The oscillators drive a differential on-chip ring antenna. That antenna, in turn, illuminates a hyper-hemispherical silicon lens through the die’s backside. An on-wafer breakout of the oscillators’ core achieves peak output power of -1.5 dBm with 275-mW direct-current (DC) power consumption. The packaged source delivers -4.1 dBm of radiated power. The source measures just 500 x 570 μm2 including the antenna. See “A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology,” IEEE Journal Of Solid-State Circuits, July 2013, p. 1751.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.
About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...