4-x-LO-Based VCO Shrinks Bluetooth Transceiver
Due to Bluetooth’s prevalence in cellular-phone platforms, there has been pressure to reduce the cost of the Bluetooth transceiver. The key is to achieve smaller die size and reduce any required external printed-circuit-board (PCB) components. Following this trend, a 4 x local-oscillator (LO) -based VCO has been proposed by a team of engineers at MediaTek, Inc: Sam Chun-Geik Tan; Fei Song; Renliang Zheng; Jiqing Cui; Guoqin Yao; Litian Tang; Yuejin Yang; Dandan Guo; Alexander Tanzil; Junmin Cao; Ming Kong; KianTiong Wong; Soong Lin Chew; Chee-Lee Heng; Osama Shana’a; and Guang-Kaai Dehng.
Their design strives to reduce the LO pulling effect and achieve superior receive (Rx) out-of-band blocking performance without requiring an external RF bandpass filter. As chip area is reduced, the traditional 2 x LO-based voltage-controlled oscillator (VCO) becomes more susceptible to interference from the power-amplifier (PA) second-harmonic products. Strong PA-to-VCO coupling can induce a frequency-pulling effect, which in turn degrades the transmitter modulation accuracy. It also increases output spectral regrowth in direct-conversion transmitters (DCTs).
Here, the 4-x-LO-based VCO is implemented to reduce LO pulling. It also minimizes transmit out-of-band spurious emissions. The transmitter provides +10 and +7 dBm output power in basic-data-rate (BDR) and enhanced-data-rate (EDR3) modes, respectively. It provides 1.5-kHz frequency stability and less than 6% root-mean-square (RMS) differential error vector magnitude (DEVM). Receiver sensitivity is -95.5, -96.5, and -89.0 dBm, respectively, for BDR, EDR2, and EDR3 modes. By integrating a balun shared between the transmitter and receiver, this transceiver eliminates the need for a separate transmit/receive switch. For continuous Tx transmission at +10 dBm, output power is 48 mA. The reference sensitivity level is 35 mA for continuous Rx reception. See “An Ultra-Low-Cost High-Performance Bluetooth SoC in 0.11-μm CMOS,” IEEE Journal Of Solid-State Circuits, Nov. 2012, p. 2665.
About the Author

Nancy Friedrich
RF Product Marketing Manager for Aerospace Defense, Keysight Technologies
Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.