Zero-IF GFSK Demodulator Consumes Just 190 μW

Jan. 9, 2013
By operating at zero intermediate frequency, this Gaussian frequency shift keying (GFSK) demodulator creates a simple and low power receiver architecture.

When used in low-power transceivers with Gaussian-frequency-shift-keying (GFSK) modulation, zero intermediate-frequency (IF) architectures remain robust in the face of quadrature imbalances. They also allow for a simple low-pass filter to reject adjacent channels. With these advantages, a low-power transceiver clearly calls for zero-IF GFSK demodulators as well. Because such demodulators typically require two power-hungry analog-to-digital converters (ADCs), however, this concept does not work for low-power applications. At Spain’s Institute of Microelectronics of Seville, an alternative GFSK demodulation scheme with phase rotation was proposed by Jens Masuch and Manuel Delgado-Restituto. Rather than requiring resistors, this approach combines the weighted outputs of current mirrors.

The demodulator is based on a phase-domain ADC (Ph-ADC). It directly quantizes the phase information of the received complex baseband signal. In addition, the Ph-ADC linearly combines the in-phase/quadrature (I/Q) aspects of the incoming signal. To detect the zero crossings and build a 4-b digital representation of the signal phase, the generated phase-shifted versions are fed to comparators.

The proposed solution employs a resistor-less scheme, which performs phase rotations in the current domain. In addition to reducing the amplitude error of the phase rotation, the demodulator permits an area-efficient implementation. With the Ph-ADC, the integrated GFSK demodulator houses a channel-filtering programmable-gain amplifier (PGA) and a symbol decision block while occupying just 0.14 mm2. The I and Q signals are first filtered and equalized with the two-stage PGA over a dynamic range of more than 50 dB. Because the subsequent Ph-ADC only evaluates phase information, the PGA simply implements coarse gain steps of 6 dB. To enable external gain control, the PGA stages’ output voltages are monitored by overflow detectors.

The demodulator consumes 190 μW from a 1-V supply. For a 1-Mb/s data rate and 0.5 modulation depth, it demands an EB/NO of 14.8 dB for a bit-error rate of 0.1% considering a flicker noise corner of 150 kHz. It boasts 74 dB dynamic range and can tolerate carrier-frequency offsets of ±170 kHz. This demodulator satisfies the requirements for the Bluetooth Low Energy (BLW) standard. See “A 190-μW zero-IF GFSK Demodulator with a 4-b Phase-Domain ADC,” IEEE Journal Of Solid-State Circuits, Nov. 2012, p. 2796.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications