Tank

AFRL and Australia Share Material Development

April 26, 2017
The Air Force Research Laboratory is working with Australian researchers on the development of graphene semiconductor materials.

In recognition of the importance of new material development for advanced defense electronics technologies, the U.S. Air Force Research Laboratory Materials and Manufacturing Directorate (AFRL/RX) and Australia’s Griffith University of Nathan have entered a material transfer agreement (MTA) that allows for joint R&D efforts. The focus of the MTA is on the development of advanced graphene materials, possibly for electronic circuit applications. As part of the MTA, the university delivered samples of an epitaxial cubic silicon carbide (3C-SiC) on silicon (Si) substrates. Graphene material is an attractive candidate for future high-power electronic circuits because of its extremely high conductivity, flexibility, and strength compared to conventional circuit substrate materials.

The AFRL/RX has worked with the Griffith University of Nathan for several years. The university contains a nanofabrication facility for growing SiC material epitaxially on silicon substrates. It is one of the few facilities in the world that can grow the material and convert it into graphene.

As part of the R&D efforts, AFRL scientists use cross-sectional transmission electron microscopy to analyze material quality. They are working in collaboration with scientists at the U. S. Naval Research Laboratory (NRL) who examine the electrical behavior of nanoscale device structures fabricated from the materials. The team efforts also involve the use of x-ray spectroscopy test equipment in the Australian Synchrotron Facility (Melbourne) to identify a buffer layer of graphene on the 3C-SiC, as well as to help refine the features of device nanostructures fabricated on these experimental materials.

 “Working with the U.S. Air Force and other U.S. military laboratories has been a boon to my research interests and shows how a strong international collaboration can enhance and benefit each country’s interests,” said Francesca Iacopi, a Griffith University professor recognized for her pioneering graphene synthesis efforts. Iacopi recently accepted a new position at the University of Technology in Sydney to continue this research.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...