Air Force Research Laboratory
Denewsjuly6 4 Promo 5eff8362df5e7

AFRL, UW Study Shape-Shifting Materials

July 3, 2020
Composite materials that change shape when subjected to a magnetic field offer promise for use as tunable filters and vibration-reducing components in military vehicles.

Materials that can change shape under magnetic fields might sound like something out of a science fiction story, but the Air Force Research Laboratory (AFRL) is exploring the potential use of such materials in tunable components that might help with vibration absorption and suppression in vehicles. Working with academic colleagues at the University of Wisconsin (UW), the AFRL is studying a family of soft magneto-active composites that can reversibly change form, enabling them to switch between multiple shapes. The elastomer composites exhibit an increase in stiffness and change in shape in response to an applied magnetic field so that they can be actively tuned. By tuning the materials with magnetic fields, they may be suitable for such applications as filters and vibration dampers that can be adjusted with noncontact tuning. In the figure above, Dr. Vincent Chen, an AFRL scientist, is applying a magnetic field to change the shapes of various magneto-active composite materials.

Details on these novel magneto-active materials were recently published in the physics journal, Physical Review Letters (April 14, 2020 issue). The research examines the interactions between different mechanical instabilities and magnetic fields and how they can be applied as practical solutions for vehicles, such as for vibration suppression and dampening.

Contributors to the research include Dr. Stephen Rudykh from the University of Wisconsin, who noted that the AFRL and the University plan to build on the basic ideas of the study to develop reconfigurable forms for new function. He said: “The design space for architected elastomers is very rich, with additional mechanisms for magneto-mechanical interactions to be discovered and harnessed for applications.” Co-author D. Abigail Juhl from the Materials and Manufacturing Directorate of AFRL added: “We are excited about the potential for magnetic tuning to improve vibration sensing and control in aircraft and other vehicle environments.”

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...