Microwaves & RF
  • Resources
  • Directory
  • Webinars
  • White Papers
  • Video
  • Blogs
  • CAD Models
  • Advertise
    • Search
  • Top Stories
  • Products of the Week
  • Defense
  • Test
  • Components
  • Semiconductors
  • Embedded
  • Data Sheets
  • Topics
    - TechXchange Topics -- Markets -DefenseAutomotive- Technologies -Test & MeasurementComponentsCellular / 5G / 6G EDA
    Resources
    Top Stories of the WeekMWRF ResourcesDigital issuesEngineering AcademyWISESearch Data SheetsCompany DirectoryLibraryContributeSubscribe
    Advertise
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    Lockheed Martin
    Denewsjune29 2 Figure
    1. Markets
    2. Defense

    Latest SBIRS Survives Lengthy TVAC Testing

    June 26, 2020
    The fifth SBIRS infrared geosynchronous satellite appears ready for surveillance duty after two months of thermal testing in a vacuum.
    Jack Browne

    If properly synchronized, satellite systems provide wide-ranging overviews of global missile activity. To ensure the highest performance even after logging long hours in space, Lockheed Martin used thermal vacuum (TVAC) testing at its Sunnyvale, CA satellite manufacturing facility to simulate the harsh environmental satellite operating conditions found in space. The testing was performed on the U.S. Space Force’s fifth space-based infrared system geosynchronous Earth orbit satellite (SBIRS), known as SBIRS GEO-5. The testing, performed in a depressurized enclosure (see the figure), simulated almost two months of satellite operation in space, on a satellite system based on a modern version of the company’s successful LM 2100 satellite bus.

    The satellite uses infrared (IR) scanners and sensors for surveillance, notably to detect missile launches and help compute a ballistic response. The SBIRS GEO-5 satellite is one of many such scanning satellites and surveillance systems that provide continuous global coverage of terrestrial missile launches. Tucker White, SBIRS GEO-5 Assembly, Test, and Launch Operations Lead from Lockheed Martin’s Government Program Office, said: “The completion of TVAC can be attributed to a tremendous effort from the Air Force, Lockheed Martin, Aerospace Corporation, and supporting contractor teams.” He added: “The teams worked around the clock and finished on schedule to their original projection. This test phase is vital to any space vehicle test regime and takes GEO-5 one step closer to providing enhanced missile detection to our warfighters.”

    Tom McCormick, vice-president for the Overhead Persistent Infrared (QPIR) Missions at Lockheed Martin Space, explained the importance of the IR sensors in space: “In SBIRS GEO-5, and our next satellite, GEO-6, we’re introducing game-changing enhancements to address the needs of our nation’s space warfighting force going forward.” McCormick pointed out the growing number of missile launches around the world: “The threat posed by ballistic missile technology continues to spread exponentially around the world. In 2019, SBIRS detected nearly a thousand missile launches globally, which is about a two-fold increase in two years.”

    Lockheed Martin is the SBIRS prime contractor, working alongside Northrop Grumman Aerospace Systems (Azusa, CA). 

    Continue Reading

    Foundry Forms ICs for Space

    11 Myths About Radar and Intelligent IoT

    Sponsored Recommendations

    Near and Far Field Measurement

    Oct. 31, 2023

    S-parameters for High-frequency Circuit Simulations

    Oct. 31, 2023

    Common Mode Filter Chokes for High Speed Data Interfaces

    Oct. 31, 2023

    Simulation Model Considerations: Part I

    Oct. 31, 2023

    New

    U.S. DoD Works to Keep Ukraine’s F-16s Flying

    Military 5G Payload Readied for Orbit

    U.S. Navy Contracts CAES for AN/ALQ-99 Transmitter

    Most Read

    Easy Digital-Filter Applications for Not-So-Easy RF System Designs

    Elastic-Wave Technology Takes on Touch-Sensing Chores

    Low-Power Wi-Fi HaLow Chips Support Long-Range Communications

    Sponsored

    mmWave Focused Beam Measurement

    Automatic Calibration Module Confidence Check

    Automated Antenna Testing

    Microwaves & RF
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo