L3Harris
Ka-band reflector antenna

Reflector Antenna Aims at Smallsat Missions

March 16, 2020
A novel Ka-band reflector antenna is about one-half the size and mass of traditional reflector antennas, in support of smaller Smallsat and Cubesat systems.

Smallsats and Cubesats are gaining in popularity as more users seek the functionality of a satellite communications (satcom) or satellite-based surveillance system without the cost of building and launching a full-sized satellite system. In support of these smaller satellite systems, L3Harris recently introduced a compact reflector antenna that significantly reduces the size and weight of traditional reflector antennas while providing high gain for Ka-band applications. The antenna is based on the company’s Smallsat Perimeter Truss (SPT) reflector and proprietary high-frequency mesh configuration to achieve high reflectivity with low cross-polarization interference.

The low mass of this reflector antenna makes it a good fit for Smallsats, with about one-half the mass of traditional reflector antennas and much less stowed height in support of Smallsat launches. Antenna reflector antennas can be as large as 4 m, with boom diameters as small as 20 cm for antenna boom lengths as long as 50 m. The low antenna mass also enables the type of pointing precision needed for many modern applications, including for synthetic-aperture-radar (SAR) systems.

“Smallsats are playing a more important role in space and industry must continue to develop ways to make every satellite component smaller and lighter to keep pace with production and mission requirements,” said Ed Zoiss, president of Space and Airborne Systems for L3Harris Technologies. “We have done that with the new Smallsat Perimeter Truss—enabling L3Harris to package large high-gain antennas onto smaller satellite platforms.”

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...