MEMS Transceiver Satisfies Low-And Medium- Data-Rate Uses

March 19, 2009
WIRELESS AND NETWORKING capability have not been seamlessly integrated into tiny devices for short-distance wireless applications. Such low-datarate (LDR) applications, which typically operate at 10 kb/s, include wireless sensor networks (WSNs) ...

WIRELESS AND NETWORKING capability have not been seamlessly integrated into tiny devices for short-distance wireless applications. Such low-datarate (LDR) applications, which typically operate at 10 kb/s, include wireless sensor networks (WSNs) and wireless body-area networks (WBANs). Also suffering from this lack of integration are 1-Mb/s medium-data-rate (MDR) applications, such as audio streaming, medical devices, miniature drug delivery systems, and implants. Currently, LDR and MDR both use different radios that are optimized for each application. A single miniature radio that covers all LDR and MDR applications was proposed by the Swiss Center for Electronics and Microtechnology's David Ruffieux, Jrmie Chabloz, Matteo Contaldo, Claude Mller, Franz- Xaver Pengg, Paola Tortori, Alexandre Vouilloz, Patrick Volet, and Christian Enz.

The researchers used a combination of high-Q microelectromechanical-systems (MEMS) devices, such as RF bulk-acoustic-wave (BAW) resonators and filters, together with a low-power RF integrated circuit (RF IC). The dedicated radio architecture employs a fixed-frequency, high-Q BAW RF oscillator while tuning at the intermediate frequency (IF). Based on a BAW digitally controlled oscillator (DCO) and a variable IF local oscillator (LO) obtained by fractional division from the RF carrier, the synthesizer displays phase noise of 113 dBc/ Hz at 3 MHz offset from the carrier. At 100 kb/s, sensitivity of 87 dBm is reached for overall power consumption of 6 mA. To demonstrate a high-datarate, quasi-direct one-point modulation capability, the transmitter generates a 4 dBm, 1-Mb/s GFSK signal with an overall current of 20 mA. See "A Narrowband Multi-Channel 2.4 GHz MEMS-Based Transceiver," IEEE Journal Of Solid-State Circuits, January 2009, p. 228.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.