SiGe GPS Receiver Handles Two Antennas

July 15, 2008
Designed for next-generation GPS systems, this tiny chip receiver features outstanding electrical performance and extremely low current consumption in a package measuring just 4 x 4 mm.

Global Positioning System (GPS) receivers are being embedded into almost any bit of electronic gear that moves, from the electronic circuits in automobiles to cellular telephones and Personal Digital Assistants (PDAs). To support this "global" expansion, SiGe Semiconductor has developed its model SE4150L GPS radio receiver for next-generation embedded GPS applications. The tiny receiver targets the three main requirements of these emerging applications, with small size, low-power operation, and low bill of material (BOM) cost.

The SE4150L GPS radio receiver measures just 4 x 4 mm but provides the performance to support GPS service in a wide range of applications (see figure). The radio provides single conversion of L-band GPS signals at 1575.42 MHz, exhibiting a system noise figure of 1 dB and input third-order intercept of better than 0 dBm. The GPS receiver features a multi-bit (2-b SIGN and MAG digital IF) output, which improves sensitivity and interference resistance for GPS solutions.

The integrated-circuit (IC) receiver builds upon the success of the company's earlier silicon-germanium (SiGe) GPS receivers, models SE4120L and SE4110L. The SE4150L is optimized to run at +2.7 to +3.6 VDC, but incorporates current-controlled output buffers that support flexible interfacing over a wide supply voltage range of +1.7 to +3.6 VDC. To save battery power, the SE4150L draws less than 10 microamperes current in standby mode.

The SE4150L's small housing belies the level of integration within the receiver, which includes a fully integrated phase-lock-loop (PLL) frequency synthesizer, based on a voltage-controlled oscillator (VCO), that is compatible with the GPS 16.368-MHz reference frequency. The chip also contains a full downconversion receiver, with in-phase (I) and quadrature (Q) mixers, a buffer low-noise amplifier (LNA), input antenna LNA, linear automatic-gain-control (AGC) stage, intermediate-frequency (IF) filter, and analog-to-digital converter (ADC). The SE4150 has two gain/ intercept control inputs to optimize the front-end LNA and mixers.

The SE4150L GPS receiver simplifies dual-antenna system design since it integrates antenna sensing, switching, and includes a low-noise amplifier (LNA). This antenna-sensing capability eliminates the need for numerous discrete components to sense when an external antenna was connected.

The SE4150L automatically responds to connection of an external antenna and interfaces directly to the GPS baseband processor to form a complete GPS radio receiver system. As Stefan Fulga, director of Strategic Marketing, notes, "Because the LNA, switching functions, and the IF filter are on-chip, we have lowered the system noise figure and increased the input IP3 performance, which results in improved sensitivity and interference resistance when compared to existing products."

The SE4150L GPS receiver is supplied in a 24-pin QFN package and shipped in tape-and-reel format for use with automated assembly equipment. To help with design efforts, SiGe Semiconductor offers the SE4150LEK1 evaluation board and user guide and can provide on-site applications assistance to customers for the design and integration of a GPS system. P&A: less than $1.50 (10,000 qty.). SiGe Semiconductor, 1050 Morrison Dr., Suite 100, Ottawa, Ontario, Canada K2H 8K7; (613) 820-9244, FAX: (613) 820-4933, Internet: www.sige.com.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications