Adaptive Smart-Antenna System Covers 60-GHz Band

Feb. 24, 2009
With the worldwide application of unlicensed spectrum around 60 GHz, it has become feasible to develop communication systems with data rates in the gigabit/second range. Yet this frequency range poses challenges like high propagation loss, oxygen ...

With the worldwide application of unlicensed spectrum around 60 GHz, it has become feasible to develop communication systems with data rates in the gigabit/second range. Yet this frequency range poses challenges like high propagation loss, oxygen absorption, high antenna directivity, and limited wall penetration. To overcome these issues, a two-channel, hybrid smart-antenna system operating at the 60-GHz band has been developed by Nuri Celik and Magdy F. Iskander from the University of Hawaii at Manoa with Motorola Labs' Rudy Emrick, Steven J. Franson, and John Holmes.

Research has shown that 60-GHz signals cannot propagate through walls and diffract around objects without significant power losses. Yet such limitations also reduce interference and increase the possibility for frequency reuse. This solution uses several highly directive antennas and selects the highest-power antenna to overcome high propagation losses and provide antenna diversity to combat human shadowing. This system can detect the angle of arrival (AOA) for the incoming signal and adjust its beam pattern accordingly.

The implemented receiver comprises monolithic-microwave-integrated-circuit (MMIC) elements. By selecting the optimal twist angle to help overlap radiation patterns, the fine alignment of the transmit and receive beams is established through beamforming. See "Implementation and Experimental Verification of a Smart Antenna System Operating at 60-GHz Band," IEEE Transactions On Antennas And Propagation, September 2008, p. 2790.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.