19.7-MHz Chebyshev LPF Targets IEEE 802.11n

March 12, 2008
The IEEE 802.11n wireless-local-area-networking (WLAN) standard employs a high-throughput extension option. As a result, a WLAN system's bandwidth can be 40 MHz in support of higher data rates. When the direct-conversion architecture is ...

The IEEE 802.11n wireless-local-area-networking (WLAN) standard employs a high-throughput extension option. As a result, a WLAN system's bandwidth can be 40 MHz in support of higher data rates. When the direct-conversion architecture is employed for these systems, a lowpass filter (LPF) with a bandwidth of 10 and/or 20 MHz is required. The design of a wideband LPF involves the selection of both the filter inductor-capacitorresistor (LCR) prototype (i.e., Butterworth or Chebyshev) and Gm C and active-RC. Shouhei Kousai and Mototsugu Hamada from Toshiba Corp.'s Center for Semiconductor Research and Development and Fui Ito and Tetsuro Itakura from Toshiba's Mobile Communication Laboratory have presented a quality-factor (Q) -tuning scheme that realizes wideband Chebyshev active-RC filters with reduced biasing current requirements.

This fifth-order LPF with a Q-tuning circuit has been implemented for draft IEEE 802.11n in 0.13-m CMOS technology. According to the researchers, the proposed Q-tuning technique results in a low-power, 19.7-MHz, active-RC Chebyshev LPF. The filter boasts 2 dB gain, 30 nV/Hz input-referred noise, and -113 dBV input power at 1-dB compression. With an area of just 0.2 mm2, it draws 7.5 mA current from a 1.5-V supply.

When the pole frequency is comparable to an amplifier's gain-bandwidth (GBW) product, one should take into account the pole of a variable resistance to tune the bandwidth. In addition, the insertion of a variable resistor into a lossy integrator is critical to the compensation of poles. See "A 19.7-MHz, Fifth-Order Active-RC Chebyshev LPF for Draft IEEE 802.11n with Automatic Quality-Factor Tuning Scheme," IEEE Journal of Solid-State Circuits, November 2007, p. 2326.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.