3 Receiver Fade 62e01759dfdfd

Receiver testing: the importance of fading

July 27, 2022
Learn more on things to consider and how to account for effects when testing real-world signals that may be scattered, reflected, and otherwise distorted due to time delays, phase shifts, amplitude changes, or Doppler shifts.

Typically, components and receivers are tested in a lab environment under ideal conditions. A signal propagates through the air along multiple paths between the transmitter and the receiver. The direct LOS signal often has the highest power level when it reaches the receiver. However, in the real world, scattered, reflected, and distorted signals will arrive with channel impairment. This paper focuses on how we can account for these effects during the testing and characterization of a receiver. 

This content is sponsored by:

Sponsored Recommendations

Wideband MMIC LNA with Bypass

Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...