Rf Microwaves Feature Image 1540x800 61f00f34ab1cf

125 GHz Frequency Doubler using a Waveguide Cavity Produced by Micro Stereolithography

Jan. 25, 2022
Read this technical paper to learn how high-precision projection micro stereolithography 3D printing was used to fabricate the first Schottky diode frequency doubler with a split-block waveguide structure.

This technical paper reports on the first Schottky diode frequency doubler with a split-block waveguide structure fabricated by a high-precision projection micro-stereolithography (PµSL) printing process. The printed polymer waveguide parts were plated with copper and a thin protective layer of gold. The surface roughness of the printed waveguide parts has been characterized and the critical dimensions measured, revealing good printing quality as well as a dimensional accuracy that meets the tight tolerance requirements for sub-terahertz active devices.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...