Lab Uses Simulation in Smart-Antenna Project

May 18, 2011
TO HELP MEET the increasing demand for reliable and secure high-bandwidth wireless communications, Washington state's Gonzaga University received a nearly $1.2-million award from the National Science Foundation (NSF) to develop a ...

TO HELP MEET the increasing demand for reliable and secure high-bandwidth wireless communications, Washington state's Gonzaga University received a nearly $1.2-million award from the National Science Foundation (NSF) to develop a Smart Antenna and Radio Laboratory (SARL). The lab, which was recently completed, strives to lower wireless product-development barriers for new companies by providing access to state-of-the-art measurements and skilled faculty at member institutions. As the university investigates more reliable, high-bandwidth wireless communications via Wi-Fi, for example, it is relying on the HFSS and DesignerRF electromagnetic (EM) simulation software from ANSYS to predict the performance of new antenna designs.

The engineering software simulates smart-antenna circuits and EM fields in three-dimensional (3D) structures. Using engineering simulation, the Gonzaga teamheaded by Steven D. Schennum, an electrical engineering professorplans to develop new, multi-antenna techniques that improve both the efficiency and bandwidth of wireless communications. With the smart technologies they develop, antennas will be able to focus on one user signal at a time. For a Wi-Fi user working on a laptop with a weak or cross-polarized signal, for example, a smart-antenna system would utilize algorithms to optimize the signal to that individual laptop.

The lab includes two shielded anechoic chambers-each equipped with a multiaxis positioner and fully automated, 3D-radiation-pattern capture and analysis software. The 600-MHz-to-6-GHz range can be scaled above and below chamber coverage with the parametric 3D EM-simulation tools, which run on a high-memory cluster-computing system. Like any antenna test chamber, however, this one is limited in its size and shape, the performance of its absorptive materials, and its effective frequency range.

As a result, simulating the EM fields and currents in a virtual environment with ANSYS software allows the team to gauge the performance of their antenna designs without building or testing them. They can evaluate the designs for any location, plane, or geometry over any frequencies before prototyping. HFSS and DesignerRF also promise to provide results at a system level including fabricated metal parts, cables, and other components.

In addition, lab users in need of protocol-aware stimulus or response can utilize a cellular-base-station simulator or capture the required system using a software-defined-radio (SDR) platform. The SDR covers 40-MHz modulation bandwidth with four coherent transceivers initially. It is available to implement specialized smart-antenna and multiple-input multiple-output (MIMO) baseband-processing algorithms and protocols.

See Associated Figure

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...