Air Force Research Laboratory
The ROBOpilot technology to quickly convert a manned aircraft to a robotic vehicle was demonstrated with a RedBird FMX simulator.

Technology Converts Manned to Unmanned Air

Aug. 19, 2019
The ROBOpilot project to quickly convert from manned to unmanned aircraft was recently demonstrated by the U.S. Air Force Research Laboratory as part of an SBIR contract with DZYNE Technologies.

As part of a rapid development of new technology, the U.S. Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base in Ohio teamed with DZYNE Technologies, Inc. to convert an “ordinary” manned aircraft to a robotically controlled unmanned aircraft, demonstrating their approach during an initial two-hour flight. The experimental flight, performed at Dugway Proving Ground in Utah, was part of the Robotic Pilot Unmanned Conversion Program ROBOpilot. The basic idea of the technology is to quickly convert an aircraft from manned to unmanned control without losing any of the aircraft’s capabilities and features, and without compromising safety.

“This flight test is a testament to AFRL’s ability to rapidly innovate technology from concept to application in a safe build up approach while still maintaining low cost and short timelines,” said Major General William Cooley, AFRL Commander. Dr. Alok Das, senior scientist with AFRL’s Center for Rapid Innovation, noted that it is not just a one-time conversion: “Imagine being able to rapidly and affordably convert a general aviation aircraft, like a Cessna or Piper, into an unmanned aerial vehicle, having it fly a mission autonomously, and then returning it back to its original manned configuration. All of this is achieved without making permanent modifications to the aircraft.”

The noninvasive approach to the conversion operates dashboard controls on the manner of a human pilot, and uses cameras and sensors—such as GPS and inertial-measurement-unit sensors—for situational awareness. Computer analysis processes the collected data to help control the aircraft automatically. “ROBOpilot offers the benefits of unmanned operations without the complexity and upfront cost associated with the development of new unmanned vehicles,” Das said.

AFRL developed the system using a Direct to Phase II small business innovation research (SBIR) contract with DZYNE of Irvine, Calif., designing and constructing the system in just one year. The initial concept was recently demonstrated in a RedBird FMX simulator, a full motion aviation training device. ROBOpilot successfully completed simulated autonomous takeoffs, mission navigation, and landings under various operating conditions.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.