Deciding Between Dielectric or Magnetic Material

Feb. 16, 2012
ANTENNA DESIGNERS have long been faced with the challenge of miniaturizing their components. Resonant antennas that are typically used in hand-held wireless devices can be made geometrically smaller by inserting the appropriate loading ...

ANTENNA DESIGNERS have long been faced with the challenge of miniaturizing their components. Resonant antennas that are typically used in hand-held wireless devices can be made geometrically smaller by inserting the appropriate loading material into the structure. But filling an antenna with material will change its field distribution. Antti O. Karilainen, Constantin R. Simovski, and Sergei A. Tretyakov of the Department of Radio Science and Engineering of Aalto University (Aalto, Finland) and Pekka M.T. Ikonen with TDK-EPC (Espoo, Finland) pondered the issue of identifying whether a dielectric or magnetic material would be the optimal loading material to optimize the bandwidth of a miniaturized design.

The researchers used the analysis of radiation mechanism to identify the fields contributing mostly to the stored energy in different miniaturized antenna designs to determine the more beneficial material type. They explored their approach using a dipole antenna and a patch antenna, as well as a planar inverted-L antenna where the conventional analysis of a circuit or a transmission-line resonator yields incorrect conclusions.

By analyzing the radiating fields for each antenna type, it was possible to select the best filling material for miniature resonant antenna designs. If the radiation mechanism is equivalent to an electric current, dielectric material works better for loading. If the radiation mechanism is equivalent to a magnetic current, magnetic loading material is the proper choice. See "Choosing Dielectric or Magnetic Material to Optimize the Bandwidth of Miniaturized Resonant Antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, November 2011, p. 3991.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...